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ABSTRACT:  In this article, a mathematical model that describes the spread of infected disease in a population is studied. It is 

assumed that the disease divided the population into two classes: susceptible individuals (S), infectious individuals )(I . The 

existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of the model is 

studied. The backward bifurcation is studied. Finally the global dynamics of the proposed model is studied numerically.  
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1. INTRODUCTION 

 The establishment and spread of infectious diseases is a 

complex phenomenon with many interacting factors, 

e.g., the environment in which the pathogen and hosts 

are situated, the population(s) it is exposed to, and the 

intra- and inter-dynamics of the population it is exposed 

to. The role of mathematical epidemiology is to model 

the establishment and spread of pathogens. A 

predominant method of doing so is to use the notion of 

abstracting the population into compartments under 

certain assumptions, which represent their health status 

with respect to the pathogen in the system. One of the 

cornerstone works to achieve success in this method was 

done by Kermack and McKendrick in the early 1927[1]. 

These models are known as compartmental models in 

epidemiology or ecology, and serve as a base 

mathematical framework for understanding the complex 

dynamics of these systems, which hope to model the 

main characteristics of the system. Once one is able to 

model an infectious pathogen with compartmental 

models, one can predict the various properties of the 

pathogen spread, for example the prevalence (total 

number of infected from the epidemic) and the duration 

of the epidemic. Also, one can understand how different 

situations may affect the outcome of the epidemic, e.g., 

what the best technique is for issuing a limited number 

of vaccines in a given population. Here we show some of 

the diseases studied by epidemiological models: 

  

   
 

    
 

Figure 1: Spread the Cholera and Hepatitis disease 

 

Cholera is an acute intestinal infectious disease caused by 

bacterium Vibrio Cholera. Recent Cholera outbreaks in Haiti 

(2010-2011), Nigeria (2010), Kenya (2010), Vietnam (2009), 

Zimbabwe (2008-2009), and Iraq (2007), etc. The container is 

leading to a large number of infections and receiving 

worldwide attention. Then, despite of many clinical and 

theoretical studies [2-9] and tremendous administrative efforts 

and interventions, Cholera remains a significant threat to 

public health in developing countries. In the year 2006 alone, 

about 240,000 Cholera cases were officially notified to the 

World Health Organization (WHO). A deep understanding of 

the disease dynamic would provide important guidelines to 

the effective prevention and control strategies [10, 11]. 

Mathematical modeling, simulation and analysis offer a 

promising way to look into the natural of Cholera dynamics, 

and many efforts have been devoted to this topic. 

Below, we briefly review some representative mathematical 

models proposed by various authors. For example, Capasso 

and Paveri-Fontana [12], introduced a simple deterministic 

model in 1979 to study a Cholera epidemic in the 

Mediterranean. In 2001, Codeco [13], extended the model of 

Capasso and Paveri-Fontana. He added an equation for the 

dynamics of the susceptible population. In 2009, Richard I. 

Joh et al. considered the dynamic of infectious disease for 

which the primary mode of transmission is indirect and 

mediated by contact with a contaminated reservoir [14]. In 

[15], Rachal L. Miller et al. formulated a mathematical model 

to include essential components such as a hyper infectious, a 

short-lived bacterial state, a separate class for mild human 

infections, and waning disease immunity. In this paper we 

proposed and studied a mathematical model of Cholera 

disease, in which it is assumed that the disease spread by 

directed contact by nonlinear functional response. We studied 
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stability analysis of this model is investigated. Also, the 

many types of bifurcations are discussed.  

 

2. Mathematical Model 

      Let )(tS and )(tI  be the number of the susceptible 

individuals and infectious individuals at time t 

respectively. The state equations, which cover this 

model, can be written as follows: 
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      Note that all the parameters of system (1) are 

assumed to be positive constants and can describe as 

following: A  birth rate in susceptible class with fraction 

p  such that )10(  p , assumed that the disease 

transmitted from class S to classes I  by contact 

interaction with infection rate constant  ,  is the 

natural death rate in each class while the   are the 

disease related death from I . K  the carrying capacity 

of disease, finally, c  is the maximum recovery per unit 

of time t, and n is the infected size. Therefore, at any 

point of time t the total population becomes 

)()( tItSN  . Obviously, due to the biological 

meaning of the variables )(tS  and )(tI , system (1) has 

the domain  0,0,,( 22   ISIS , which is 

positive invariant for system (1). Clearly, the interaction 

functions on the right hand side of system (1) are 

continuously differentiable. In fact they are Liptschizan 

function on 2
 . Therefore the solution of system (1) 

exists and unique. Further, all solutions are uniformly 

bounded: 

Theorem (1):  Any solutions of system (1), which are 

initiate in 2
 if exists, are positive and bounded. 

Proof: Let  )(),( tItS  be any solution of system (1) with 

non-negative initial condition  )0(),0( IS , 

since )()()( tItStN  , then: 
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Now, by solving the above linear differential equation, 

we get that the total population is asymptotically 

constant by: 
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Hence all the solution of system (1) that initiate in 2
 , 

are confined in the region:                     
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3. The Basic Reproduction Number 

    For all infectious disease, the basic reproduction number, 

sometimes called basic reproductive ratio, is one of the most 

useful threshold parameters that characterizes mathematical 

problems concerning infectious disease. This metric is useful 

because it helps us to determine whether an infectious disease 

will spread through a population, we will calculate the basic 

reproduction number. 

     It easy to see that this system always has a disease free 

equilibrium point (the absence of infection, that is, 0I ). 

According to theorem 2 in [16], the basic reproduction 

number of system (1) is: 
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4. Equilibria Points 

    In this section, we shall discuss the existence of each 

possible equilibrium points of system (1).  

Now, this system has two biologically feasible points, denoted 

by ),( iii ISE  , 1,0i , are discussed in following:  

 1) When 0I  and 1 , then system (1) has a disease 

free equilibrium point and denoted by )0,( 00 SE   where: 
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A
S 0                                                                         (3) 

 2) When 0I , and 1 , then system (1) has endemic 

equilibrium point and denoted by ),( 111 ISE  where 1S  and 1I  

represent the positive solution of following set of equations: 
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Obviously, from 1
st
equation of (4) we get: 
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Substituting 1S  in the 2
nd

 equation of (4) we get: 
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Here: 
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Clearly, equation (6) by Descartes rule [17] has one positive 

root given by 1I  and then the equilibrium point )( 1E  exists 

uniquely in Int. 2
  if and only if we have one from the 

following four Cases:  
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Case (1):  If the following conditions are hold: 

 0, 432  and                                            (7a) 

Case (2):  If the following conditions are hold: 

  0, 432  and                                            (7b) 

Case (3):  If the following conditions are hold: 

 00, 432  and                                     (7c) 

Case (4):  If the following conditions are hold: 

 0,,0 432  and                                   (7d) 

 

5. Local Settled Analysis 

    In this part, the local stability analysis of the each 

equilibria  1,0, iEi  of system (1) studied. 

Theorem (2):   The asymptomatic and symptomatic 

infectious free equilibrium point )0,( 00


A
SE   of 

System (1) is locally settled when 1  and then the 

following conditions are satisfied, but 0E  unsettled when 

:1  

 ])([0 rnKnS                                         (8) 

  

Proof:  The Jacobian matrix of system (1) at )( 0E  that 

denoted by )( 0EJ  and can be written: 

 220 ][)(  ijaEJ ,  

where: 
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Then the characteristic equation of the Jacobian matrix 

J( 0E ) is given by : 

 02  BH                                                  (9) 

Where: 
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Consequently equation (9) have the following roots 

(eigenvalues) of )( 0EJ : 
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Where S  and I  describe the dynamics in the S and I 

direction respectively. Clearly S and I  are negative 

depending on condition (8). 

Therefore, 0E  is asymptotically settled equilibrium 

point provided that condition (8).                                                 

■ 

Theorem (3):  The endemic equilibrium point 

),( 111 ISE  of System (1) is local asymptotic settled 

when 1  and then the following conditions are satisfied: 
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Proof:   The Jacobian matrix of System (1) at ),( 111 ISE   

written by: 

 221 ][)(  ijbEJ , where: 
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Then the characteristic equation of the Jacobian matrix J( 1E ) 

is given by : 

 011
2  BH                                                         (14) 

Where: 
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Consequently equation (14) have the following roots 

(eigenvalues) of )( 1EJ : 
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Where S  and I  describe the dynamics in the S and I  

direction respectively. Clearly S and I  are negative 

depending on conditions (12-13). Therefore, 1E  is 

asymptotically settled equilibrium point provided that 

condition (12-13) hence the proof is complete.                   ■ 

 

6. Global Settled Analysis 

    In this part, the global analysis of the all points  1,0, iEi  

of system (1) studied. 

Theorem (4):  If the disease free equilibrium point 0E  of 

System (1) is local settled. Then it is global settled if satisfy 

the following condition: 

IrInIKSSIIKpAInS ]))()[((])()[(0                                                                          

….. (17)   
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Proof: Consider the following positive definite function: 
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By simplifying this equation we get: 
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Obviously, 01 V , for any initial points and then 1V  is a 

Lyapunov function provided that condition (17) hold. 

Thus 0E  is global settled.                                        ■ 

Theorem (5):   If the endemic point 1E  of System (1) is 

local settled. Then it is global settled provided that: 
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                                                                 …….. (18b) 

Proof: Consider the following positive definite function: 
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Now, simplifying this equation we get: 
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Therefore, according to the conditions (18a)-(18b) we 

obtain that: 
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Clearly, 02 V , and then 2V  is a Lyapunov function 

provided that the given conditions(18a)-(18b) hold. 

Therefore,  1E   is globally asymptotically settled.           ■ 

7. The Hpof bifurcation analysis 

     In this part, the periodic dynamic due to changing the value 

of one parameter is studied in the following theorem. 

Theorem (6): The system (1) has a Hopf-bifurcation around 

the endemic equilibrium point 1E  satisfy the following 

condition: 
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Proof: Consider the Jacobian matrix of system (1) at 1E  with 

the characteristic equation can be written in the following 

form: 
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Then  

 02  DT                                                        (21) 

Clearly, the eigenvalues of above equation can be written: 
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    Clearly, system (1) dose not a Hopf-bifurcation around the 

endemic equilibrium point 1E  if trace of eigenvalues 0T  . 

    Now, the necessary and sufficient conditions for a Hopf-

bifurcation to occur we need to find a parameter  say  

satisfy that: 

 0)( T                                                        (22a) 

 0
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   Then the system (1) has two complex conjugate 

eigenvalues. Clearly, the 1st condition (22a) for the Hopf-

bifurcation is satisfied at    if and only if provided the 

conditions (19-20). 

    Let as now check the 2nd condition (22b) in the following: 

 02 
d

dT
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    Hence, the system (1) has a Hopf-bifurcation [18], a 

round the endemic equilibrium point 1E  at the 

parameter   .                                                   ■ 

8. Backward Bifurcation 

   In this part, the bifurcation analysis of system (1) is 

studied. In fact, across 1 , the disease free 

equilibrium point changes its stability. In the following, 

we consider system (1) and investigate the nature of the 

bifurcation involving the disease free equilibrium ( 0E ) 

for 1 . Now, we look for conditions on the 

parameter values that cause a forward or a backward 

bifurcation to occur. In order to do that, we will make 

use of the result summarized below, which has been 

obtained in Castillo-Chavez and Song [19]. 

Theorem 7: We show that system (1) may exhibit a 

backward or forward bifurcation when 1 . We 

consider the disease free equilibrium point ( 0E ) and 

observe that condition 1  can be seen, in terms of 

the parameter )(
0 n

r

S

K
  . Now we can, 

introducing 21, xIxS   then system (1) becomes: 

 
























2

2
2

2

21
2

1
2

21
1

)(

)1(

xn

rx
x

xK

xx
pAx

x
xK

xx
Apx











   (23) 

Then, from the jacobian matrix: 

 




























n

r

K

S

K

S

EJ

)(0

)(

0

0

0







,  

  We get one of eigenvalues of matrix ),( 0
EJ  is zero 

and the other are real and negative. Therefore, we can 

use the center manifold theory. Hence, when    (or 

equivalent, where 1 ), the disease free point 0E  is 

non-hyperbolic point: the assumption )( 1A  of Castillo-

Chavez and Song [19], is then verified. 

   Now, we denoted by  TvvV 21 , , a right eigenvector 

associated with the zero eigenvalue. It is found by: 

 0

)(0 2

1

0

0






























v

v

n

r

K

S
K

S







 

Thus, we can get: 

 

0)(

0

2
0

2
0

1













v
n

r

K

S

v
K

S
v







 

Therefore, the right eigenvector is

T

K

S
V 








 1,0




. 

Now, we find the left eigenvector   TwwW 21 ,  satisfying 

V.W=1 is given by: 

 

T

n

r
KS

S
W


















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

))((

,1

0

0




 

Evaluating the partial derivatives at 0E , we obtain: 
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And all other partial derivatives are equal to zero. Clearly, we 

can find calculate the coefficients a  and b defined in 

Castillo-Chavez and Song [19]. 
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Taking into account the system (1) and considering in a  and  

b  only the nonzero derivatives for the terms ),( 0

2





P

xx

f

ji

k  

and ),( 0

2








P

x

f

i

k , it follows that: 
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Clearly, we need the coefficient b  is always positive so 

that, according to theorem in [19], it clearly, when 0a , 

such a bifurcation is forward, but if 0a  the bifurcation 

is backward.                                     ■ 

 

9. Numerical Simulation 

    In this part, system (1) is solved numerically for 

different sets of data and different sets of initial 

conditions, and then the solutions of system (1) are 

confirm our obtained analytical results. By using (150, 

550) and (300, 100) as initial points and the numerical 

simulations are carried out in the following: 

For the disease free 0E , we choose the following data: 

 
9.0;2.0;2;5.0

;2;001.0;0;100









nr

KpA
          (24) 

Therefore, the disease free 0E  of system (1) is global 

settled and is identically to (1000, 0) for any time. 

 

 
Figure 2: The solutions of system (1) from different initial 

points for data given in equation (24) which show that 0E  

is globally asymptotically settled. 

 

   Now, for the data given equation (24) with p=0.1. The 

solutions of system (1) starting from different sets of 

initial data (150, 550) and (300, 100) are drawn in Figure 

(3). Then, the endemic equilibrium point 1E  of system 

(1) is globally asymptotically settled and is identically to 

(891, 34) for any time. 

 
Figure 3: The solutions of system (1) from different initial points 

for data in equation (24) with p=0.1, which show that 1E  is 

globally asymptotically settled. 

 

Now, we choose values for the fraction rate 5.0,3.0,1.0p  

respectively, with parameters fixed as given in (24), we get 

the solutions of system (1) still approaches to endemic 

equilibria point but the number of symptomatic infectious 

individuals increase while the number of the asymptomatic 

susceptible individuals decreases. 

 
Figure 4: The solutions of system (1). (a) For S , (b) For I . 

 

We fixed all parameters in equation (24) but we change 

infection rate value 5.0,2.0,01.0  respectively, we get the 

solutions of system (1) still approaches to endemic point but 

the number of susceptible individuals decrease while the 

number of the symptomatic infectious increases. 
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Figure 5: The solutions of system (1). (a) For S , (b) For I . 

 

Clearly, we present the effect of recovery rate that is by 

change value for 5,1,5.0r  respectively, with 

parameters fixed as given in (24), we get the solutions of 

system (1) still approaches to endemic point but the 

number of asymptomatic infected individuals decreases 

while the susceptible individuals is smoothly increases. 

 
Figure 6: The solutions of system (1). (a) For S , (b) For I . 
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